Aalto University School of Electrical Engineering Metrology Research Institute

Dmitri Lanevski Farshid Manoocheri

Instruction Manual on Using Perkin-Elmer Lambda 900 spectrometer for Regular Spectral Transmittance and Absorbance Measurements

Version 1.0 13/12/2018

1. Table of contents

1. Table of contents	.2
2. Definition	.3
2.1. Scope	.3
2.2. Object and field of application	
2.3. Features	
2.4. Principles and definitions	
3. Equipment	.4
3.1. Measurement ranges and best measurement capabilities	
4. Traceability Chain	.5
5. Calibration methods and procedures	.6
6. Handling calibrations items	.16
7. Uncertainty components	.17
8. Laboratory accommodation and environment	.20
9. Field calibrations	.21
10. Control data	.22
11. Certificates	.23
12. Intercomparisons	.24
13. Publications	.25

2. Definition

2.1. Scope

This instruction manual describes principles and operation of the Perkin-Elmer Lambda 900 (PE900) transfer standard spectrometer setup at the Metrology Research Institute (MRI) that is used to perform transmittance and absorbance measurements. Procedures for the characterization of the instrument and calibration of transmittance standards are also given.

2.2. Object and field of application

PE900 spectrometer: setup for measuring transmittance and absorbance.

Regular spectral transmittance: The regular spectral transmittance *T* of a given medium is the ratio of the transmitted spectral radiant flux $\Phi_{\lambda^{\lambda},T}$ to the incident spectral radiant flux Φ_{λ} :

$$T(\lambda, \theta_1) = \frac{\Phi_{\lambda, T}}{\Phi_{\lambda}}$$

Regular spectral absorbance: The absorbance values A are related to regular transmittance T as

$$\mathsf{A} = -\log_{10}\mathsf{T}.$$

2.3. Features

Transfer standard spectrometer setup consists of Perkin-Elmer Lambda 900 device thoroughly described in ref. [1]. Setup is located in spectrometer laboratory of the MRI. The instrument is designed to perform regular transmittance and absorbance spectrophotometric measurements by comparing intensity of a beam transmitted through the medium to a reference beam transmitted through the free space (air).

2.4. Principles and definitions

Regular transmittance and absorbance are derived from monochromatic light fluxes transmitted through the medium under investigation and free space (air). Fluxes are measured by photosensitive detectors corresponding to wavelength of monochromatic light and compared to each other according to principles and definitions described in ref. [2]

^[1] Perkin Elmer Lambda 900 Users Guide

^[2] Quality Manual of Reference Spectrometer Laboratory

3. Equipment

3.1. Instrument description

The instrument (Perkin-Elmer Lambda 900) is a double monochromator, double beam spectrometer with a wavelength range of 185-3300 nm. The bandpass can be selected within 0.05 to 5.00 nm in UV/VIS range and within 0.2 to 20 nm in NIR range. The setup and its maintenance are thoroughly described in ref. [1].

3.2. Measurement ranges and best measurement capabilities

PE900 spectrometer in our laboratory has been characterised for operation with the parameters given in Error! Reference source not found..

	Wavelength range (nm)	Band- width (nm)	Beam size (mm x mm)	Light source	Colli- mation	High-order rejection	Detection system
1.	UV 220-330	0.5 - 5	2 x 4 – 5 x 1 2	Deuterium Iamp	< 3°		Photomulti- plier-tube de- tector
2.	Visible 330-870	0.3 - 5	1 x 3 – 5 x 1 2	Quartz- halogen lamp	~ 3°	Filter	Photomulti- plier-tube de- tector
3.	NIR 870-1700	1 - 20	2 x 5 – 9 x 1 2	Quartz- halogen lamp	< 3°	Filter	TE-cooled PbS detector

 Table 1. Operation parameters of the PE900 spectrometer in transmittance measurements.

4. Traceability Chain

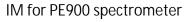
4.1. Photometric scale

PE900 photometric calibration is traceable to reference spectrometer via several neutral density filters calibrated every 2 years according to the "Calsched" as described in ref. [2].

4.2. Wavelength scale and bandpass

After a 30-minute warm-up period, running the software (Start-up check) tests the wavelength scale. Instructions are given in the user manual on how to proceed, if the test fails. The wavelength scale and bandpass are verified twice a year by scanning the spectral absorption peaks of known wavelength standard materials such as Holmium oxide doped glass filter and McCrown glass filter (see ref. [2] Sec. Error! Reference source not found..B).

4.3. Linearity of the detectors

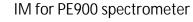

The linearity of the detectors of PE900 has been checked with a set of five reference filters measured with the Reference spectrometer at 300 nm, 750 nm, and 1300 nm. The nominal transmittance of the filters is 0.05, 0.25, 0.5, 0.7, and 0.92.

4.4. Stability

If the temperature remains stable the wavelength scale is not altered, but for the baseline a drift of 0.1% has been observed in the NIR wavelength regions in less than one hour. Usually the measuring time is less than 15 minutes.

4.5. Beam polarization

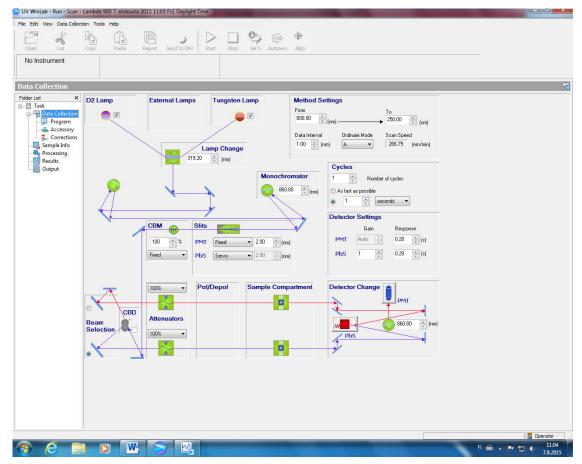
The degree of polarisation of the instrument beam was determined in the same manner as described in ref. [2] Sec. Error! Reference source not found.. For this purpose the transmittance of a Glan-Taylor polarising prism was measured over the spectral range from 240 to 1700 nm using the sample beam. The calculated degree of polarisation P, varied from 0.06 to 0.75.


5. Calibration methods and procedures

- 5.1. Measurement procedure
 - 1. Turn on the device and start the program from the desktop

2. Choose your user name. 'Operator' is typically used

tance - Punity Inc	Select your user name from the drop down list.	
User nar		
Operat	pr	-
×.	OK Cancel	


- 3. Turn on the PE900, the spectrometer will take some time before it is ready for use.
- 4. Choose either existing method, which are listed in the middle, or click "Scan Lambda 900".

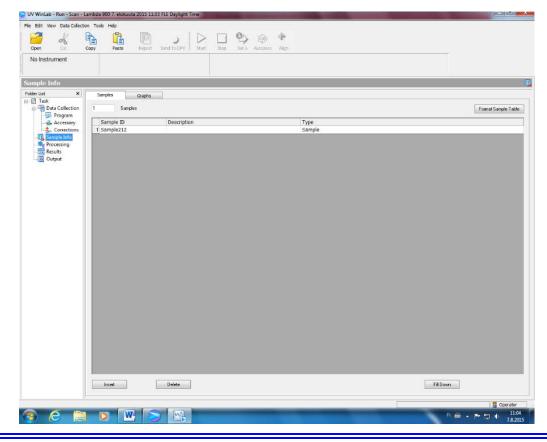
Scan method scans a range of wavelengths with chosen interval. Other methods are also available. For example, wavelength program method is used to measure discreet wavelengths chosen by the user.

New C	ut Paste I	Delete Manual Control Views						
ethods								
Base Methods	Folder List ×	Name	Туре	Modified on	Modified by	Status		
M	thods	Scan - 700-500_Kasperi	Scan	18. toukokuuta 2	Operator	Draft		
	ks	Scan - PE_FM2	Scan	8. toukokuuta 20	Operator	Draft		
n - Lambda 900	- (1) Instruments	Scan - small_beam_FM	Scan	21. huhtikuuta 20	Operator	Draft		
1.0	Queries	FM0, 2 nm peak test	Scan	4. maaliskuuta 20	Operator	Draft		
Ö.	Report Templates	Wavelength program - wallac filters	Waveleng	26. helmikuuta 20		Draft		
drive - Lambda	Reports	Scan - PE_FM	Scan	25. helmikuuta 20		Draft		
900	Recycle Bin	Scan - VTT_FM	Scan	19. tammikuuta 2		Draft		
		Scan - Farah	Scan	8. joulukuuta 201		Draft		
λ		Wavelength program - 666 filters	Waveleng	8. joulukuuta 201		Draft		
		McCrone McF1	Scan	4. joulukuuta 201		Draft Draft		
elength quant - .ambda 900		Planmeca NIR	Scan	 2. joulukuuta 201 21. lokakuuta 201 		Draft		
		M FM340	Scan	15. syyskuuta 20		Draft		
		hohenheide - out of band - Lambda 900	Scan	8. syyskuuta 201		Draft		
		FM-V(lambda) 1nm	Scan	7. toukokuuta 20		Draft		
anning quant - ambda 900		FM656 nm peak test	Scan		PerkinElmer Servi	Draft		
ambda 900		Scan - päiksekad	Scan	24. huhtikuuta 20	PerkinElmer Servi	Draft		
		F440	Scan	4. huhtikuuta 201	PerkinElmer Servi	Draft		
		sara-V(lambda) 1nm	Scan	26. maaliskuuta 2	PerkinElmer Servi	Draft		
elength program		sara-HoO-1nm	Scan		PerkinElmer Servi	Draft		
Lambda 900		sara V(lambda)	Scan		PerkinElmer Servi	Draft		
Intel		V(lambda)	Scan		PerkinElmer Servi	Draft		
*		Scan - Lambda 900_FM	Scan		PerkinElmer Servi			
arization scan -		Polarization scan - Lambda 900	Polarizatio		PerkinElmer Servi			
Lambda 900		Wavelength program - Lambda 900	Waveleng Scanning		PerkinElmer Servi PerkinElmer Servi			
		Wavelength quart - Lambda 900	Waveleng		PerkinElmer Servi			
		Timedrive - Lambda 900	Timedrive		PerkinElmer Servi			
		Scan - Lambda 900	Scan		PerkinElmer Servi			
		Example Methods	Public folder		PerkinElmer Servi			
		Service Methods	Public folder	18. helmikuuta 20				
abase Queries		v. S					0	perator 11:02

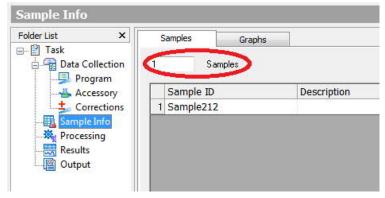
5. General settings

After the task is chosen, new window opens. Select Data Collection from the menu on the left side of the window to access general settings.

- a. Method settings (Left upper coner)
 - i. Set your wavelength range, start form the longer wavelenght (e.g. from 600 to 500)
 - ii. Choose data interval (1 second is often suffcient)
 - iii. Set the ordinate mode to %T
- b. Detector settings
 - i. Choose desired integration time by changing 'Response' setting
- c. Slits
 - i. Set the width of the slit
- d. Beam selection
 - i. Choose which beam passes through your sample (the rear beam is often prefered)


Other settings can also be modified according to the requirements of your measurement.

6. Corrections tab


🔵 UV WinLab - Run - Scan - L	ambda 900 /. elokuuta 2015 11:03 FLE Daylight Time	
File Edit View Data Collectio	in Tools Help	
	Copy Peste Report Send To DPV Start Stop Set A Autozero Align	
Corrections		±.
Folder List × Task Program Accessory Sample Info Processing Results Output	Baseline Corrections Baseline Determination Always at task start I 100%T / OA Baseline (Autozero) O%T / Blocked Beam Baseline Use internal attenuator Do not invalidate baselines with respect to instrument settings	Expire Corrections Never In 8 *
	Reflection Corrections Correction Type None Light Spectral Reference Dark Spectral Reference None Attenuator Corrections Correction Determination Measure Image: Ima	

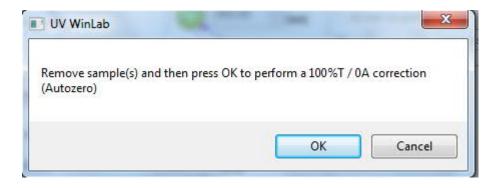
- a. Tick '100%T / 0A Baseline (Autozero)'
- b. Tick '0%T /Blocked Beam Baseline'
- 7. Samples tab

a. Set the number of samples you want to measure.

b. You can rename your samples by clicking the cell which contains the current name (here Sample212) and typing the desired name.

1		Samples	
Γ	Samp	le ID	Des
	1 Samp	le212	

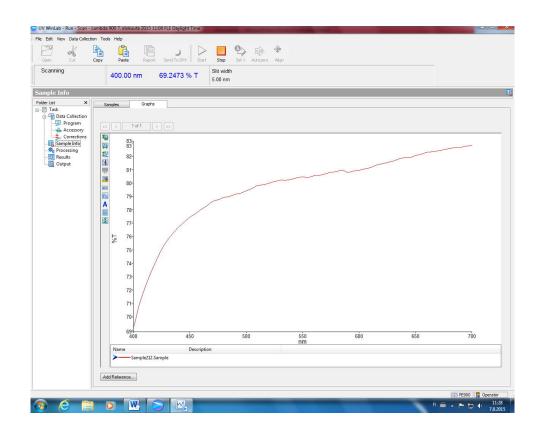
8. Aligning


- a. You can make sure that your sample is placed properly by using 'Align'.
- b. NOTICE! When you press 'Align' and the instrument produces white light. It is recommended to cover the hole through which the beam is aimed to protect the detector from saturation. The hole can be easily covered with a sheet of paper.
- c. When you are done with your aligning, press 'Align' button again and wait until the white light is gone. Then, remove the cover you used.

9. Autozero

- a. Press 'Autozero'.
- b. Remember to remove everything that might be blocking the beams and click 'OK'.

10. Starting the measurement


a. Press 'Start'.

b. Insert your sample and press 'OK'.

- 11. During the measurement
 - a. Results are shown in a graph.

b. If you have several samples, the program will tell you when to insert the next one.

c. When all samples have been measured, the following message is shown, press 'OK'.

(
le have here ave
ole have been run
ОК

- 12. Saving the results
 - a. First, save the data to a task.

ave Task As		х
Name		
Scan - Lambda 900	7. elokuuta 2015 11:28 FLE Daylight Time	
Description		
		Ŧ
	Save	

r

b. Next, click 'Export' to export the results data and select the type of data you need.

		Export Data	
		Export Data Options:	
UV	WinLab - Run - Scan	Data Export <u>C:\Users\Public\Documents\</u>	
	Thinks har ocan		
File	Edit View Data Colle	Sample Table	
3	Open		
100		Sample ID	
5	Import Table	✓ Description ✓ Type	
	Save Results	⊾ Ivpe	
	Save Settings	Sample ID	
-	Save Spectra		
-	16	Туре	
2	Export	Spectral Data	
	Export Table	🗄 - 🚧 Data	
		Spectrum Export File (raw) <u>.SP</u>	
	Send To		
			•
國	Report Preview	XY Data (processed) Samples by Columns	
	Report		
	Exit	Restore Defau	ults
21	EXIL	Export Canc	-

c. The data folder with the task name should now be found at the documents folder.

rganize 🔻 Share with 🔻 Burr	n New folder			8== • [
Favorites 📃 Desktop	Documents library Scan - Lambda 900 7. elokuuta 2015 11_35 FLE Daylight Time			Arrange by: Fold	ler '
\rm Downloads	Name	Date modified	Type	Size	
🖳 Recent Places	国 100% or 0 Absorbance Baseline.Correction.Raw	7.8.2015 11:46	Microsoft Excel C	2 KB	
🎍 Calibrations	100% or 0 Absorbance Baseline.Correction.Raw	7.8.2015 11:46	SP File	2 KB	
	Info	7.8.2015 11:46	Text Document	1 KB	
Libraries Documents	Results Table	7.8.2015 11:46	Microsoft Excel C	1 KB	
Music	🖾 Sample Table	7.8.2015 11:46	Microsoft Excel C	1 KB	
Pictures	Sample212.Sample.Raw	7.8.2015 11:46	Microsoft Excel C	2 KB	
Videos	Sample212.Sample.Raw	7.8.2015 11:46	SP File	3 KB	
Computer Local Disk (C:) Network FARSHID_LABRA METROLOGY PALLOLABRA KK-FC16C4EFE8C					

6. Handling calibrations items

- Calibrated items are not to be cleaned without permission from customer.
- If samples are cleaned calibration results are given before and after the cleaning.
- Filters are cleaned according to [3] with permission from branch manager

^[3] ORIEL, Guide to Cleaning Research Optics, (Tutorial text).

7. Uncertainty components

7.1. Regular transmittance

Table 2. Uncertainty components in regular transmittance measurements for absorption neutral-density and for interference filters with a nominal transmittance of 0.1 - 1.0 at UV, visible, and NIR wavelengths. The numbers are absolute values and valid in the wavelengths. The numbers are absolute values and valid in the wavelength range of 220 - 1700 nm. summarises the measurement ranges and the corresponding uncertainty budgets applied for customer calibrations. In addition, filter induced uncertainty such as material homogeneity and high reflectance is added as sum of squares to the measurement standard uncertainty. The expanded uncertainty in measurement of 0.0001 - 0.001 transmittance, ranges from 0.5% to 5%.

Table 2. Uncertainty components in regular transmittance measurements for absorption neutral-density and for interference filters with a nominal transmittance of 0.1 - 1.0 at UV, visible, and NIR wavelengths. The numbers are absolute values and valid in the wavelengths. The numbers are absolute values and valid in the wavelengths. The numbers are absolute values and valid in the wavelength range of 220 - 1700 nm.

	Bandwidth:	Standa	standard uncertainty in transmittance / %					
	0.5 nm – 2.0 nm							
	Component	Neutra	I-density f	ilters	20-nm	interferen	ce filters	
		UV	Visible	NIR	UV	Visible	NIR	
1.	Transmittance of ref- erence filters	0.07	0.05	0.05	0.14	0.08	0.12	
2.	Detector linearity	0.04	0.04	0.09	0.04	0.04	0.09	
3.	System drift and noise	0.05	0.02	0.06	0.05	0.02	0.06	
4.	Beam polarisation*	0.03	0.07	0.03	0.03	0.07	0.03	
5.	Interreflections	0.04	0.02	0.02	0.09	0.08	0.07	
6.	Square root of sum of squares	0.11	0.10	0.12	0.18	0.14	0.18	
7.	Expanded uncertainty (k=2)	0.21	0.20	0.25	0.36	0.28	0.36	

*The filters are measured in two perpendicular orientations to average the effect of beam geometry and polarisation where necessary.

7.2. Regular absorbance

UV WinLab v6.0 software of PE900 is used to collect measured data and to find wavelengths of absorbance peaks for the case of rare-earth doped-glass 'wavelength standard' filters.

The uncertainty components for absorbance value are determined from those of spectral transmittance as $u_A=0.4343 \times \Delta T/T$, where $\Delta T/T$ is the relative uncertainty of transmittance measurements .

If $A = -\log_{10} T$, then $T = 10^{-A}$ or $T = (0.1)^{A}$

To observe the change of transmittance as a function of absorbance, we have $\Delta \Pi \Delta A = (0.1)^4 \ln(0.1) = T \ln(0.1)$.

After rearranging then,

Δ7/7=ln (0.1) ΔA

 $\Delta A = 1/\ln (0.1) \Delta T/T = 0.4343 \times \Delta T/T.$

Table 3 summarises the corresponding uncertainty budgets of Absorbance measurements applied for customer calibrations.

Table 3. Uncertainty components in Absorbance measurements for absorption neutral-density and for interference filters with a nominal absorbance of 0.02 - 1.0 at UV, visible, and NIR wavelengths. The numbers are absolute values and valid in the wavelength range of 220 - 1700 nm.

	Bandwidth: Standard uncertainty in Absorbance 0.5 nm – 2.0 nm						
	Component	Neutra	I-density f	ilters	20-nm	interferer	nce filters
		UV	Visible	NIR	UV	Visible	NIR
8.	Transmittance of ref- erence filters	0.0003	0.0002	0.0002	0.0006	0.0003	0.0005
9.	Detector linearity	0.0002	0.0002	0.0004	0.0002	0.0002	0.0004
10.	System drift and noise	0.0002	0.0001	0.0003	0.0002	0.0001	0.0003
11.	Beam polarisation*	0.0001	0.0003	0.0001	0.0001	0.0003	0.0001
12.	Interreflections	0.0002	0.0001	0.0001	0.0004	0.0003	0.0003
13.	Square root of sum of squares	0.0005	0.0004	0.0005	0.0008	0.0006	0.0008
14.	Expanded uncertainty (k=2)	0.0009	0.0009	0.0011	0.0016	0.0012	0.0016

*The filters are measured in two perpendicular orientations to average the effect of beam geometry and polarisation where necessary.

8. Laboratory accommodation and environment

Laboratory accommodation and environment is the same as for the reference spectrometer and is described in ref. [2] Sec. 8.

9. Field calibrations

Not applicable.

10. Control data

Maintenance records of the equipment are written in a chronological order to a notebook labelled "PE900 Spectrometer Data notebook" and it is kept in the Reference spectrometer laboratory.

11. Certificates

Calibration certificates are handled according to [4]. In the calibration certificates included are:

- Ambient temperature and relative humidity,
- Source of traceability,
- Regular transmittance and/or absorbance values at the measurement wavelengths and uncertainty estimates.
- Comparison with previously recorded transmittance and absorbance values if data on articles under investigation is available.

^[4] Instructions on writing calibration certificates.

12. Intercomparisons

Version: 1.0

13. Publications